Turn-Act Rotary Vane Actuators at a Glance

Unified Body
Turn-Act's patented extrusion combines tube, stator and bolt lobes into a one-piece unified body.

Unique design provides torsional rigidity allowing the unit to stop and hold shaft loads internally, while effectively transmitting shocks to its mountings.

Shaft Bearings
Full complement needle bearings accommodate substantial radial loads.

Air Inlets
The large hole permits more rapid air entry and exhaust for faster response time.

Bolt Lobe

The Gold Seal
Turn-Act's patented polyurethane seal provides smooth rotation, minimal leak rates, low pressure breakaways and millions of cycles.

Features
- Zero backlash
- No loss of motion
- Smooth rotation
- Precise repeatability
- Continuous full torque throughout rotation

Machined Aluminum Heads

Rotor Shaft Assembly
Turn-Act's patented rotor/vane assembly eliminates the possibility of shaft rotation in the rotor and permits the use of a wide variety of shaft materials. Output shafts can be custom ordered for specific application requirements.

Three Bore Sizes
- Comp-Act - 9 to 100 inch pounds
- Turn-Act - 87 to 1000 inch pounds
- Brute - 400 to 5200 inch pounds

14 Different Models Available

Six Standard Rotations
- 45° - Turn-Act Series Only
- 90°
- 110° - Brute Series Only
- 180°
- 270°
- 290° - Brute Series Only

Custom Rotations Available
Turn-Act Rotary Vane Actuator Custom Solutions

Standard Options

<table>
<thead>
<tr>
<th>Shaft Materials</th>
<th>Shaft Connections</th>
<th>Actuator Mounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Mild Steel G & P</td>
<td>• Single end – no keyway</td>
<td>• Flange mount – rod end</td>
</tr>
<tr>
<td>• Stainless Steel</td>
<td>• Double end – no keyway each end</td>
<td>• Flange mount – cap end</td>
</tr>
<tr>
<td>• Heat Treated</td>
<td>• Single end – woodruff key</td>
<td>• Side angle mounting brackets</td>
</tr>
<tr>
<td></td>
<td>• Double end – woodruff key each end</td>
<td>• Extended tie rods – rod end</td>
</tr>
<tr>
<td></td>
<td>• Single end – Shaft flat</td>
<td>• Extended tie rods – cap end</td>
</tr>
<tr>
<td></td>
<td>• Double end – Shaft flat each end</td>
<td>• Extended tie rods – both ends</td>
</tr>
<tr>
<td></td>
<td>• Single end – keyway</td>
<td>• Side mounts</td>
</tr>
<tr>
<td></td>
<td>• Double end - keyway</td>
<td></td>
</tr>
</tbody>
</table>

Adjustable Stroke Control
• Infinite rotational adjustment for the precise rotation required.
• Retract or extend the stop screw to either increase or decrease the rotation.

Bumpers
• End-of-stroke cushioning
• Reduced noise level
• Absorbs kinetic energy

Switches
• Sinking
• Sourcing
• Reed
• Proximity
• Potentiometers
• Encoders
• Flying leads
• Quick disconnects

Online Configuration

We have the industry’s best product configurator with a simple to use online interface. Getting complex products configured and quoted is just a mouse click away. Simply go to www.compactautomation.com and select CONFIGURATORS from the drop down list.

Select ROTARY ACTUATORS to launch our configuration tool and begin the selection process to a unique solution.
Turn-Act rotary vane actuators whether used independently or with other fluid power motion devices promise long term performance. The following pages represent only a few of the application possibilities. Feel free to contact one of our authorized distributors or the Compact office for your specific application requirements.
Turn-Act Rotary Vane Actuator Applications

- Damper Control
- Mixing and Stirring
- Cam Indexing
- Escapement Feeding
- Shearing Materials
- Tension Shock Absorber
Turn-Act Rotary Vane Actuator Applications

Linear Motion
Turn-Act brand rotary vane actuators have two distinct advantages over conventional cylinders for linear motion applications.

- Extended cylinder rods are subject to side forces and bending. Our Turn-Act rotary vane actuators are designed for side load applications.

- Extended cylinder rods corrode and accumulate grime. When retracting the rod wears its bushing and rod seal leading to cylinder failure. Turn-Act actuator rods do not extend nor retract, they just rotate making them an excellent choice for clean or dirty environments.

HARMONIC MOTION: Ideal transfer system providing maximum speed with sinusoidal acceleration and deceleration. Angle at ends of rotary actuator strokes must be 90°.

LEVER MOTION: Gates on machinery such as molding presses, machine centers and furnaces.

Rotary Harmonic Motion
High speed rotary reciprocation is best accomplished with harmonic motion. This system provides sinusoidal acceleration and deceleration. Angle at end of rotary actuator strokes must be 90°.
Definitions

Actuator: A mechanical device to convert pneumatic (air) or hydraulic pressure into rotary motion. Compact’s Turn-Act rotary vane actuators develop more torque in less space than any other types of actuator.

Maximum rotation is 290°.

International Standards Organization (ISO) symbol for actuators is:

Example of Equal Torques

Torque: As torque applies to rotary actuators is defined as follows:

A force multiplied by the perpendicular distance between the point of action and center of rotation.

\[\text{Torque} = F \times D \]

Generally for actuators F is in pounds. D is in inches and torque is expressed as in. lbs.

Torque can only be specified or used as the combination of (so many) pounds acting at a distance of (so many) inches or feet. This combination of force working at a certain distance from the fulcrum is called a “moment”. Therefore, torque is always called out in units which include a unit of distance and a unit of force, such as “inch-pounds”, “foot-pounds” and “inch-ounces”.

There is an infinite number of combinations of force x distance which equal the same torque. Three possible combinations are shown in these figures all equaling 400 in. pounds. A weight of 200 pounds at a distance of 2 in. from fulcrum point = 400 in. pounds, and 50 pounds x 8 in. = 400 in. pounds. Any of these combinations would produce the same twisting effect on the shaft, or would require the same output torque from an actuator to lift the weights.